Tutorial 2 Part B: The View Matrix & Frame Rates

Summary

Now that you can move your objects around in world space, you’re probably wondering how to move
your viewpoint around, too. This tutorial will show you how to do so using the view matrix, and
show an example of a simple Camera class to use in your OpenGL applications. You’ll also see how
to move around your scene at a constant rate, no matter what your frame rate is.

New Concepts

Camera Matrix, View Matrix, Camera class, framerate independence

Introduction

In the last tutorial, you were briefly introduced to the view matrix, as a member variable of the
OGLRenderer class, and a uniform variable of a shader, but you didn’t do much with them. In this
lesson, you’ll learn how to manipulate the view matrix, allowing you to move around your scenes. To
demonstrate this, we’re going to create a Camera class, that responds to typical FPS game mouse
and keyboard commands, and which has a function to create a valid view matrix. Then, we’ll add it
to last tutorial’s code, to show how easy it is to add camera support to your OpenGL applications.
Also, as your scenes get more complicated, you may find that your applications cannot maintain a
constant framerate, so this lesson will also show you how to combat some of the possible side effects
of this.

The View Matrix

Like the model matrix, the view matrix can contain translation and rotation components - but instead
of transforming an individual object, it transforms everything! It moves your geometry from world
space to view space - that is, a coordinate system with your desired viewpoint at the origin. Earlier
versions of OpenGL combined the model and view matrices together, into one 'modelview’ matrix,
but OpenGL 3, and most other graphical rendering APIs, keep them separate, until being multiplied
together in a vertex shader. Just as you have been using model matrices to translate and rotate your
meshes, you can think of the view matrix as being the model matrix of the view point - it can contain
any of the transformation components you were introduced to last tutorial, including translation and
rotation.



However, there’s one important thing to consider - to form a correct view matrix, the matrix
transformations you perform must be inverted. The following example should hopefully make it clear
why. Imagine a scene where your camera is at the origin, looking down the negative z axis, towards
a cube that is 10 units away.

-z

%

The camera matrix, the cube’s model matrix, and the combined 'modelview’ matrix they form,
would look as follows:

10 0 0 1 00 O 100 O
01 0 0 6010 O} _ (010 O
0 010 0 01 —-100 |0 0O 1 =10
0 0 01 0 00 1 0 0 0 1

The resulting matrix places the cube 10 units away from the camera, as expected. Now, imagine
that both the cube and the camera move 10 units down the z axis. The matrices formed would look
like this:

1 0 0 10 1 0 0 10 1 0 0 20
01 0 O 010 O} (010 O
00 1 O 0 01 —-100 |0 0 1 =10
00 0 1 00 0 1 00 0 1

This doesn’t look right! If we were to use this matrix to render our object with, it would appear
off to the right of the screen, when it should still be in the centre, as both the cube and the camera
have moved along the same axis by the same amount.

%

Instead, we use the inverse of the camera matrix, so it is transformed in the opposite way:

1 0 0 -10 1 0 0 10 1 0 0 O
01 0 O 010 O} (010 O
001 O 0 0 1 -10 0 01 -10
00 0 1 00 0 1 0 00 1

That’s better! Using the inverse gives us a final matrix which places the cube in front of the camera
at a distance of 10 units.




Framerate Independence

In the current applications you’ve been writing, you probably get a constant, very high, frame rate - the
exact framerate will depend on whether your graphics driver locks your framerate to the refresh rate
of your monitor. But what if your game gets complex enough that the framerate becomes inconsistent?

Think about what you did last tutorial - every frame, if the J key is pressed down, the triangle
moves 1 unit to the left. So, if your framerate is capped at 60 frames per second, your triangle moves
60 units to the left. But what if your framerate is unlimited? You might get over 1000 frames a sec-
ond on such a simple scene - that’ll mean your triangle would move 1000 units to the left in one second!

The simplest solution, and the one we’ll be using in these tutorials, is scale values by how much
time has passed since the last frame. How accurately time can be measured, and the unit of measure-
ment used, will depend on your operating system, and the functions used. For now, we’ll just assume
the unit of measurement is milliseconds, and the timing is accurate to within 1 ms. Now, assume
we want our triangle to move 60 units to the left, no matter what our framerate is. How would we
achieve this? Like this!

Movement = x/(1000.0/msec)

Where z is the 'per second’ value (in this case 60 units) and msec is the number of milliseconds that
have passed since the last frame. So for example, if our framerate was a mere 1 FPS, we’d end up
with:

Movement = 60.0 = 60.0/(1000.0/1000.0)

and if we had a framerate of 30 FPS we’d get the following (1000ms / 30 FPS = 33.333 msec):

Movement = 2.0 = 60.0/(1000.0/33.333)

In each case, we end up with 60 units being traversed over the course of 1 second. Easy! Now
we can keep everything consistent across variable framerates, by using the formula to calculate fram-
erate independent values for all of our rotations, translations, and anything else we can think up
in our games! It’s not perfect - rounding errors caused by the inaccuracies of floating point values
mean things might be slightly off, but it’s good enough for now. These inaccuracies can have unex-
pected consequences - one famous example being that certain trick jumps in Quake III could only be
performed if the player had a constant framerate of 120FPS!

Example program

No new program this tutorial; instead we're going create a new class, and add a virtual function to
the Renderer class you made in the last tutorial. Create a new class called Camera to the NCLGL
solution project - we’ll be using the Camera class often! For now though, we’ll add a Camera to last
tutorial’s example program, so we can use the view matrix variable in its vertex shader.

Camera header file

Our Camera class will make use of the Matriz4 class and the Vector3 class, so we must include both
of their header files. The class has three protected member variables - its position in world space, and
its yaw and pitch. In case you don’t know, pitch is how many degrees up or down something is facing,
and its yaw is it’s heading. We also have public accessor functions for each of these - as the code is
trivial, we’ll collapse them into the header file. We’ll do that with a couple of constructors too, one
default, and one that takes arguments to explicitly set the member variables. Finally, we have two
more public functions, UpdateCamera, and Build ViewMatriz. You’ll see what these do shortly.



© 00 ~NO O WN -

W W WWwWwwWwwWWWWNNNDNMNNNDNNDNNMNERERRRERRPRRPRRPR P P2
O© 00 NOO O WNEF, O OO NOOOP WNEFE O OWOOWNO O WwWNDE—O

#pragma once
#include "Window.h"
#include "Matrix4.h"
#include "Vector3.h"
class Camera {
public:
Camera (void){
yaw = 0.0f;
pitch = 0.0f;
s
Camera(float pitch, float yaw, Vector3 position){
this->pitch = pitch;
this->yaw = yaw;
this->position = position;
}
~“Camera(void){};
void UpdateCamera(float msec = 10.0f);
Matrix4 BuildViewMatrix();
Vector3 GetPosition() const { return position; }
void SetPosition(Vector3 val) { position = val; }
float GetYaw () const { return yaw; 7}
void SetYaw(float y) { yaw = y; }
float GetPitch () const { return pitch;}
void SetPitch(float p) { pitch = p; }
protected:
float yaw;
float pitch;
Vector3 position; //Set to 0,0,0 by Vector3 constructor ;)
3
Camera.h

Camera class file

First up - UpdateCamera. This will read in the mouse and keyboard input, and update the member
variables accordingly. It’s not quite as easy as you’d first think, but nothing too difficult. First, we
read in the pitch from the mouse y axis (the up and down movement of the mouse), and yaw from
the z axis (the sideways movement) - the GetRelativePosition function of the NCLGL Mouse class
returns how much the mouse has moved since the last game frame. We then lock the pitch variable
to be between 90 and -90 degrees - just like in an FPS game. We also do a bit of sanity checking on
the yaw variable, to keep it within the range 0 to 360 degrees.




© 00 ~NO O WN -

10

12
13
14
15

16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31

#include "Camera.h"
void Camera::UpdateCamera(float msec) {
pitch -= (Window::GetMouse () ->GetRelativePosition().y);
yaw -= (Window::GetMouse () ->GetRelativePosition () .x);
pitch = min(pitch, 90.0f);
pitch = max(pitch,-90.0f);
if (yaw < 0) {
yaw += 360.0f;
}
if (yaw > 360.0f) A
yaw -= 360.0f;
}

Camera.cpp

To move the camera about the game world, we're going to use the common WASD keyboard input
for the z and z axis. To do so we’re going to form a rotation matrix using the yaw variable, and use
it to multiply a direction vector pointing down the negative z axis - rotating it to point the direction
the camera is facing. The vector is then multiplied by the msec variable to scale it by the frame rate,
and added to the camera position variable.

if (Window::GetKeyboard () ->KeyDown (KEYBOARD_W)) {

position += Matrix4::Rotation(yaw, Vector3(0.0f,1.0f,0.0f)) *
Vector3(0.0f,0.0f,-1.0f) * msec;
is
if (Window::GetKeyboard () ->KeyDown (KEYBOARD_S)) {
position -= Matrix4::Rotation(yaw, Vector3(0.0f,1.0f,0.0f)) =*
Vector3(0.0f,0.0f,-1.0f) * msec;
}

Camera.cpp

In case you don’t quite follow, here’s how this works. In the case where we have a yaw value of 0°, the
vector (0,0,-1) stays the same, and the position variable will move down the negative z axis. However,
if we were to have a yaw value of 45 °, the vector (0,0,-1) would be rotated to a value of approximately
(-0.70761,0,-0.70761), meaining the movement would be diagonal. If yaw were 90°, the vector would
equal (-1,0,0), and movement would instead be down the negative x axis.

For the sideways movement, we do much the same. This time, however, the Vector3 being rotated
has a non-zero z axis, rather than the z axis.

if (Window::GetKeyboard () ->KeyDown (KEYBOARD_A)) {

position += Matrix4::Rotation(yaw, Vector3(0.0f,1.0f,0.0f)) =*
Vector3(-1.0f,0.0f,0.0f) * msec;
}
if (Window::GetKeyboard () ->KeyDown (KEYBOARD_D)) {
position -= Matrix4::Rotation(yaw, Vector3(0.0f,1.0f,0.0f)) x*
Vector3(-1.0f,0.0f,0.0f) * msec;
}

Camera.cpp

To move up and down, we're going to use shift and space, respectively. We want the camera to
move up and down no matter what its orientation is, making an easy calculation - we just increment
or decrement the y axis by msec, giving us 1000.0 units per second of y axis movement.




32
33

35
36
37
38

39
40
41
42
43

S wWw N e

if (Window::GetKeyboard () ->KeyDown (KEYBOARD_SHIFT)) {
position.y += msec;
}
if (Window::GetKeyboard () ->KeyDown (KEYBOARD_SPACE)) {
position.y -= msec;
}
}

Camera.cpp

The BuildViewMatriz function will form the view matrix required for our vertex shaders. As
explained earlier, this view matrix is the inverse of the matrix created from the camera’s position
and rotation values. However, inverting a 4-4 matrix is very computationally expensive - look up the
code somewhere, it’s nasty! We could use the inverse function of GLSL to hide the tricky details of
inverting a matrix if we wanted, but instead we’re going to do something a little bit sneaky. We can
just megate the pitch, yaw, and position of the camera when forming the matrix, which does just the
same as the inverting the matrix, but is a far cheaper operation!

We build the actual matrix using three temporary matrices - two to rotate by the negated pitch
and yaw, and one to translate by the negated position. Remember, the order of matrix multiplica-
tions is important! If we had the translation matrix before the rotation matrices, we’d be rotating
and translating around the origin at a distance of the camera position, not rotating at the camera
position. Also, take note of the axis each of the rotations is performed around.

Matrix4 Camera::BuildViewMatrix () {
return Matrix4::Rotation(-pitch, Vector3(1,0,0)) =*
Matrix4::Rotation(-yaw, Vector3(0,1,0)) x*
Matrix4::Translation(-position);
i

Camera.cpp

Using the class

With the class successfully compiled in your NCLGL project, you can start to use it in your programs.
Add a Camera member variable to the Renderer class for the last tutorial. You also need to imple-
ment the virtual function UpdateScene, inherited from the OGLRenderer class. It has the following
function signature:

virtual void UpdateScene(float msec);

Renderer.h

As you can see, it takes in a single float as a parameter. This will represent the number of mil-
liseconds that have passed since the last time UpdateScene was called. Then, in your Renderer class
file, add the following function definition:

void Renderer::UpdateScene(float msec) {
camera->UpdateCamera (msec) ;
viewMatrix = camera->BuildViewMatrix ();
}

Renderer.cpp

This function’s purpose should be a bit clearer, now. It updates your new Camera class with the
appropriate number of milliseconds, and then builds a new view matrix, ready for sending to your
shaders. As you saw in the last tutorial, the code to send a matrix to a shader is a bit unwieldy, so
we're also going to create a new protected function in OGLRenderer, called UpdateShaderMatrices,




O 00 ~NO O WN -

10

12
13
14
15
16
17
18
19

O ~NO O WN -

with the following code:

void OGLRenderer::UpdateShaderMatrices () {
if (currentShader) {
glUniformMatrix4fv (
glGetUniformLocation (currentShader ->GetProgram(),
"modelMatrix"),1,false, (floatx*)&modelMatrix);
glUniformMatrix4fv (
glGetUniformLocation (currentShader ->GetProgram(),
"viewMatrix"),1,false, (floatx*)&viewMatrix);
glUniformMatrix4fv (
glGetUniformLocation (currentShader ->GetProgram (),
"projMatrix"),1,false, (float*)&projMatrix);
glUniformMatrix4fv (
glGetUniformLocation (currentShader ->GetProgram(),
"textureMatrix"), 1,false, (float*)&textureMatrix);
}
}

OGLRenderer.cpp

The OpenGL function calls should be fairly familiar to you - we used them last tutorial to set
the model and projection matrix. This time we’re going to set the view and texture matrices, too, in
exactly the same way (you’ll see how to use the texture matrix next tutorial!). This is just a way to
cut down the amount of repetitive code in your Renderer class. You can use it instead of the two calls
to glUniformMatrix4fv starting on line 28 in tutorial 2, handily also updating our new view matrix!

Finally, we must call UpdateScene in our game loop, so modify your loop in Tutorial2.cpp as follows:

while (w.UpdateWindow ()
&% !'Window::GetKeyboard () ->KeyDown (KEYBOARD_ESCAPE)){
//Tutorial 2 code goes here...

renderer .UpdateScene (w.GetTimer () ->GetTimedMS ()) ;
renderer .RenderScene () ;

Tutorial2.cpp

We now call UpdateScene, but how does it get the correct number of milliseconds? Fortunately,
the NCLGL has a Timer class that is instantiated behind-the-scenes when a Window is created. The
Timer class is a small wrapper around the high performance counter on your CPU, which additionally
keeps track of the number of milliseconds since the the last call to its function GetTimedMS, which
it calls when it is first instantiated. So, as long as you only use the timer to time one thing, in this
case the time since the last frame, you’ll always have an accurate counter to use to keep your Camera
moving at the correct speed.

Tutorial Summary

If you re-run your second tutorial program after making the changes, you should be able to switch to
perspective mode, and move around your simple triangle scene using the mouse to alter your pitch
and yaw, and the W, A, S, D, Shift, and Space keys to move around the scene. Not too exciting,
but you now know what a view matrix is, how to use it, and how to keep your calculations correct
even when the framerate is variable. Next tutorial, you'll see how to use texture maps to make your
geometry look more realistic, and also take a look at how to use the texture matrix.




Further Work

1) What happens if you multiply the view matrix by a scaling matrix? Does it do what you thought
it would?

2) How about if you change the order of the rotations in the Build ViewMatriz functions?

3) The Camera class currently uses a simple value of msec to work out how far to move. This
might be too slow or too fast for your game, so try adding in a speed member variable to the class -
you could even have a separate speed per axis! How would you use the speed variable with the msec
parameter of UpdateCamera?

4) The Camera class currently creates view matrix rotations about the X and Y axis. Try adding
in a roll member variable to the Camera class, which rotates about the Z axis. Does it do what you
thought it would? How about when you roll 90 degrees?



